Monday, 10 July 2017

C Code Exponential Moving Average


Eu sei que isso é possível com o impulso como por: Mas eu realmente gostaria de evitar usar impulso. Eu tenho googled e não encontrei qualquer exemplos adequados ou legível. Basicamente, eu quero acompanhar a média móvel de um fluxo em andamento de um fluxo de números de ponto flutuante usando os mais recentes números de 1000 como uma amostra de dados. Qual é a maneira mais fácil de conseguir isso que eu experimentei com o uso de uma matriz circular, média móvel exponencial e uma média móvel mais simples e descobriu que os resultados da matriz circular adequado às minhas necessidades. Se suas necessidades são simples, você pode apenas tentar usar uma média móvel exponencial. Simplificando, você faz uma variável de acumulador, e como seu código olha para cada amostra, o código atualiza o acumulador com o novo valor. Você escolhe um alfa constante que está entre 0 e 1 e calcula isso: Você só precisa encontrar um valor de alfa onde o efeito de uma determinada amostra só dura cerca de 1000 amostras. Hmm, Im realmente não tenho certeza que isso é adequado para você, agora que Ive colocá-lo aqui. O problema é que 1000 é uma janela muito longa para uma média móvel exponencial Não tenho certeza se há um alfa que estenderia a média nos últimos 1000 números, sem subfluxo no cálculo do ponto flutuante. Mas se você quisesse uma média menor, como 30 números ou assim, esta é uma maneira muito fácil e rápida de fazê-lo. Respondeu 12 de junho 12 em 4:44 1 em seu borne. A média móvel exponencial pode permitir que o alfa seja variável. Portanto, isso permite que ele seja usado para calcular médias de base de tempo (por exemplo, bytes por segundo). Se o tempo desde a última actualização do acumulador for superior a 1 segundo, deixe alfa ser 1.0. Caso contrário, você pode deixar alfa ser (usecs desde a última atualização / 1000000). Ndash jxh Jun 12 12 at 6:21 Basicamente, eu quero acompanhar a média móvel de um fluxo em curso de um fluxo de números de ponto flutuante usando os mais recentes números de 1000 como uma amostra de dados. Observe que o abaixo atualiza o total como elementos como adicionado / substituído, evitando costal O (N) traversal para calcular a soma - necessária para a média - on demand. Total é feito um parâmetro diferente de T para suporte, e. Usando um longo longo quando totalizando 1000 s longos, um int para char s, ou um dobro ao total float s. Este é um pouco falho em que numsamples poderia ir passado INTMAX - se você se importa que você poderia usar um unsigned longo longo. Ou usar um membro de dados bool extra para gravar quando o recipiente é preenchido pela primeira vez enquanto ciclismo numsamples em torno da matriz (melhor então renomeado algo inócuo como pos). Respondida em 12 de junho de 12 às 5:19, assume-se que o operador quotvoid (amostra T) é, na verdade, operador quotvoid (T amostra) quot. Ndash oPless Jun 8 14 at 11:52 oPless ahhh. Bem manchado. Na verdade, eu quis dizer para ser void operador () (T amostra), mas é claro que você poderia usar qualquer nota que você gostava. Vai corrigir, obrigado. Ndash Tony D Jun 8 14 em 14: 27Exponential Moving Average - EMA Carregando o player. Os EMAs de 12 e 26 dias são as médias de curto prazo mais populares e são usados ​​para criar indicadores como a divergência de convergência média móvel (MACD) eo oscilador de preços percentuais (PPO). Em geral, as EMA de 50 e 200 dias são usadas como sinais de tendências de longo prazo. Traders que empregam análise técnica encontrar médias móveis muito útil e perspicaz quando aplicado corretamente, mas criar havoc quando usado de forma inadequada ou são mal interpretados. Todas as médias móveis normalmente utilizadas na análise técnica são, pela sua própria natureza, indicadores de atraso. Conseqüentemente, as conclusões tiradas da aplicação de uma média móvel a um gráfico de mercado específico devem ser para confirmar um movimento de mercado ou para indicar sua força. Muitas vezes, quando uma linha de indicadores de média móvel fez uma alteração para refletir uma mudança significativa no mercado, o ponto ótimo de entrada no mercado já passou. Um EMA serve para aliviar este dilema em certa medida. Porque o cálculo EMA coloca mais peso sobre os dados mais recentes, ele abraça a ação de preço um pouco mais apertado e, portanto, reage mais rápido. Isto é desejável quando um EMA é usado para derivar um sinal de entrada de negociação. Interpretando a EMA Como todos os indicadores de média móvel, eles são muito mais adequados para mercados de tendências. Quando o mercado está em uma tendência de alta forte e sustentada. A linha de indicador EMA também mostrará uma tendência de alta e vice-versa para uma tendência de queda. Um comerciante vigilante não só prestar atenção à direção da linha EMA, mas também a relação da taxa de mudança de uma barra para a próxima. Por exemplo, à medida que a ação de preço de uma forte tendência de alta começar a se nivelar e reverter, a taxa de mudança da EMA de uma barra para a próxima começará a diminuir até que a linha de indicador se aplana ea taxa de mudança seja zero. Por causa do efeito retardado, por este ponto, ou mesmo alguns bares antes, a ação de preço já deve ter invertido. Por conseguinte, segue-se que a observação de uma diminuição consistente da taxa de variação da EMA poderia ser utilizada como um indicador que poderia contrariar o dilema causado pelo efeito retardado das médias móveis. Usos comuns do EMA EMAs são comumente usados ​​em conjunto com outros indicadores para confirmar movimentos significativos do mercado e para avaliar a sua validade. Para os comerciantes que negociam intraday e mercados em rápido movimento, o EMA é mais aplicável. Muitas vezes os comerciantes usam EMAs para determinar um viés de negociação. Por exemplo, se um EMA em um gráfico diário mostra uma forte tendência ascendente, uma estratégia de comerciantes intraday pode ser o comércio apenas a partir do lado de longo em um gráfico intraday. Driving a revolução verde no transporte Avanços da tecnologia mais eletrificar carros, permitir novas eficiências. O transporte automotivo está passando por uma revolução, já que os avançados eletrônicos possibilitam a eletrificação de motores de veículos, além de aumentar a automação, segurança, conforto e conveniência. A média móvel exponencial é um tipo de filtro IIR que é fácil de implementar em C e usa recursos mínimos. Ao contrário de uma média móvel simples, não requer um buffer RAM para armazenar amostras anteriores. Ele só tem que armazenar um valor (a média anterior). Uma média móvel exponencial é expressa como a seguinte equação: avgn (em alfa) avgn-1 (1-alfa). Implementar esta equação usando matemática em ponto flutuante é direto, mas usar variáveis ​​de ponto fixo é um pouco complicado. O snippet de código aqui usa inteiros de 32 bits assinados para a média e os valores de entrada. Valores intermediários precisam usar matemática de 64 bits para evitar erros de estouro. Alfa valores próximos a zero representam média pesada, enquanto um valor alfa de um não tem média.

No comments:

Post a Comment